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Evolution of SU(1,l) coherent states in harmonic oscillators 
with time-dependent masses 

Christopher C Gerry and Marie F Plumb 
Department of Physics, St Bonaventure University, St Bonaventure, NY 14778, USA 

Received 28 March 1990 

Abstract. We study the evolution of SU( 1, 1) coherent states, which may represent squeezed 
vacuum states, in harmonic oscillators with time-dependent masses. Such oscillators may 
model a quantised electromagnetic field in a cavity where the field changes with time under 
the action of some reservoir. We consider three types of variable mass: a decaying mass, 
a pulsating mass, and a mass with damping and pulsation. We have found that in the most 
interesting cases involving pulsation, a high degree of squeezing (enhanced squeezing) 
may be obtained in the vicinity of the resonance where the pulsation frequency is twice 
the natural oscillator frequency. 

1. Introduction 

Recently, there has been much interest in the quantum mechanical description of 
harmonic oscillators with time-dependent masses. Of particular relevance to the present 
work is a series of papers by Colegrave and Abdalla [l-61, Abdalla [7,8] and Abdalla 
and Ramjit [9]. These authors have considered the time-dependent mass problem for 
the harmonic oscillator in the context of a quantised electromagnetic field in a Fabry- 
PCrot cavity where the time-dependent mass can model a decaying or driven cavity. 

In the present paper, we shall reconsider the problem of harmonic oscillators with 
time dependent masses from the point of view of the generalised coherent states (cs) 
associated with the dynamical group SU(1, 1) [lo]. Specifically, we show that the 
Hamiltonians associated with such systems may be cast into a form linear in the 
generators of SU(1, 1)  which implies that an arbitrary initial SU(1, 1) cs is preserved 
under time evolution by such a system [l l l t .  Moreover we shall study the evolution 
of SU( 1 , l )  cs for particular mass laws, namely a decaying mass: M (  t )  = MO e-2y', and 
oscillating mass: M ( t )  = Mo(l  + a sin ht)( lal< l ) ,  and the case of a mass law with 
damping and pulsation: M (  t )  = MO exp[2( yt + p sin vt)]. These mass laws may rep- 
resent phenomenologically the interaction of the cavity field with the cavity walls in 
the case of damping in a finite Q cavity or with a reservoir of two-level atoms absorbing 
and re-emitting photons causing oscillations in the field (see below). Now the SU(1, 1) 
cs may be taken as a specific type of quantum state having no classical analogue, 
namely a squeezed state or, more specifically, a squeezed vacuum state [12,13] the 
single mode quantised electromagnetic field. We therefore retain this picture of the 

t Equation (2.25) in [ l l ]  is incorrect. The correct equation is (2.19) of the present paper. 
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harmonic oscillator with a variable mass as a model for a quantised electromagnetic 
field in a cavity. We shall study the effects of the cavity on an injected SU(1, 1) cs 
(which may be a squeezed vacuum state). A specific case of an initial state would of 
course be just the usual unsqueezed vacuum from which a squeezed state would be 
expected to arise. Indeed, Hong-Yi and Zaidi [14] have shown that squeezing can 
arise by the change of mass of a harmonic oscillator. (Squeezing can also arise by a 
time dependent frequency [ 151.) 

The plan of the paper is as follows. In section 2 we review the quantised cavity 
field with a time dependent mass parameter and relate that formalism to the dynamical 
group SU(1 , l ) .  We give only a brief review of the SU(1 , l )  cs but we do present the 
general method of solving the time evolution of an initial SU(1 , l )  cs for our particular 
problem. This basically involves solving a first-order differential equation of a Riccati 
type for a complex parameter representing the phase space of the ‘classical’ motion. 
In section 3 we study the particular mass laws previously given. A few brief remarks 
are made in the conclusion of section 4. 

Before going to the next section however, we point out that a related study has 
already been carried out for a damped harmonic oscillator [16]. The interpretation in 
that case is somewhat different than in the present case where the mass carries the 
time dependence. In [16] we used the Kanoi-Caldirola [17] (KC) Hamiltonian for 
which recently Yeon et a1 [18] and Oh et a1 [19] have constructed exact coherent 
states which are generalisations of the usual harmonic oscillator coherent states. For 
critiques of the use of the KC Hamiltonian see Greenberger [20] and Dekker [21]. 

2. SU(1,l) formulation of a harmonic oscillator with a time-dependent mass 

In this section we reformulate the treatment of Colegrave and Abdalla [l-61 of the 
harmonic oscillator of variable mass by using the SU( 1, 1) dynamical group. We begin, 
as a matter of motivation, by considering the quantised electromagnetic field with a 
time dependent mass parameter, essentially along the lines given in references [ 11 and 
[4]. Aside from giving the general setting for the problem, this allows us to properly 
introduce the quadrature operators for the field with the variable mass parameter. 

Following Sargent et a1 [22] and Colegrave and Abdalla [l, 41, we write the 
non-vanishing component of the electric field as 

where V is the volume of the cavity, M ( t )  is a time-dependent parameter with the 
dimensions of mass, and q(  t )  has the dimensions of length. From Maxwell’s equations 
V x &‘ = eo as/at, the magnetic field is 

(2.2) ZJz, r )  = [ ~ W ; E ~ /  VK2]1’2M-1’2(f)p(f) COS KZ 

where 

d 
d t  

p (  t )  = M ” 2 ( t )  - [ M ” 2 (  t ) q (  t)] (2.3) 

in the canonical momentum conjugate to the coordinate y ( r ) .  The Hamiltonian of the 
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system is just 

Quantisation proceeds by demanding that [ q, p ]  = i. 
We now introduce annihilation and creation operators by defining 

such that [ a ,  a + ]  = 1. The mass M,, is the constant ‘reference mass’ of the harmonic 
oscillator in the case of no time dependence. In terms of these operators the cavity 
fields become 

1 / 2  M ( t )  1/2 

g,(z, t )  = (2) (x) ( a  + a + )  sin Kz  

( W ~ E ~ )  1 ( MO ) ’’* 
Ry(z, t ) =  - - ( U  - U + )  cos Kz. 

V K ~  i ~ ( t )  

We introduce the field quadratures (see the review in [ 2 3 ] )  as 

X I =  (;;)) - 1’2xlo 

x,  = (3) 1’zx20 
M ( t )  

(2.7) 

where X l o  and X 2 ,  are the quadrature operators for mass MO: 

xl0 = f ( a  + a + )  

1 
X - - ( a - a + ) .  

2o - 2i 

The commutation relations for the quadrature operators are 

(2.10) 

(2.1 1) 

Squeezing is said to exist if for any quadrature operator X ,  ( ( A X ) 2 )  <a. In what follows 
we shall perform a scale transformation such that we need only consider the operators 
Xlo and X 2 0 .  



4000 C C Gerry and M F Plumb 

We now introduce the su(1 , l )  Lie algebra which consist of the generators KO, K ,  
and K 2  satisfying the commutation relations 

[ K ,  , K2] = -i KO [KZ, KO1 = iK1 [KO, K11= iK2 (2.12 

or with K ,  = K ,  *iK2, 

[ K O ,  L I = * K ,  [K,,  K-]=-2Ko. (2.13) 

The algebra may be realised in terms of the annihilation and creation operators as 

KO = a( uta + U U + )  = f( a+a + f) 
K ,  = f(a')' K-  = f a 2 .  

(2.14) 

The relevant unitary irreducible representations are the positive discrete series 9+( k) 
whose basis we denote as {Im, k)} for k > 0 ,  m = 0 , 1 , 2 , .  . . . The number k is the 
Bargmann index and is related to the Casimir operator C = K i -  K : -  K :  according to 

Clm, k ) =  k(k-l)jm, k). (2.15) 

For the realisation of equations (2.14), one has C = -A such that k = a  or a. The Fock 
space of photon number states In), such that Nln) = n l n )  where N = a+a, is split into 
even number states k = a, and odd number states k = $. That is, the SU(1, l )  group 
state Im,$ corresponds to photon states 12m) while the state Im,:) corresponds to 
(2m + l),  which is clear since KO = $( N +$). 

The S U ( 1 , l )  cs are defined as [lo] 

16, k)=exp(aK+-  cu*K-)IO, k) (2.16) 

where (Y = -56 e-id and 6 and 4 are group parameters with the ranges 0 < 6 < CD, 

0 s  4 C 27r and 5 = -tanh(@) e-id.  These states may be expanded in the basis Im, k) 
as [ lo]  

(2.17) 

Note that in our case, the cs are linear superpositions of all even (k = a) or all odd 
(k =:) photon states. In the rest of the paper we consider only the cs for k =a, which 
includes the vacuum. The complex parameter 6, where 151 < 1, defines the classical 
phase space of the S U ( 1 , l )  cs, which has been shown to be in the form of the 
Lobachevsky plane [ 101. It has previously been shown that for a Hamiltonian consisting 
of a linear combination of the S U ( 1 , l )  generators, e.g. 

H ( t )  =A(t)K,+f(t)K,+f*(t)K_+B(t) (2.18) 

where A( t )  and B( 2 )  are real and f( t )  is complex, but otherwise arbitrary, preserves 
the coherence of an initial SU(1, l )  cs, 15, k), under time evolution and that 5 satisfies 
the classical equation of motion 

= -iA( t ) &  - if*( t ) [ *  - i f (  t ) .  (2.19) 

In the next section, we shall present solutions (mostly numerical) for this equation 
upon specifying A( t )  and f( t) .  
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Using the annihilation and creation operators of (2.5), the SU(1, 1) generators may 
be written as 

KO = i(a’a +f) = ( p2+ Mowoq2) 
4 MOW0 

From these we have that 

2 
q2 = - ( KO + K ,  ) 

p 2  = 2M0W0( KO - K , )  

MOW0 

so that the Hamiltonian of (2.4) becomes 

This is, of course, of the form of (2.18) with 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

However, we now perform a time-dependent scale transformation to effectively 
reduce the coefficient of KO to a constant, thus reducing the number of time-dependent 
functions needed in (2.19). Since our transformation is to be time dependent, we start 
with the time-dependent Schrodinger equation 

(2.24) 

Let V (  t )  be a time dependent unitary operator effecting the transformation. The 
transformed Hamiltonian is then 

d 
H(t) l+)  = i % 14). 

such that the Schrodinger equation now reads 

d -  

(2.25) 

(2.26) 

where I + ) =  V(t ) I$) .  Since K 2  of (2.20) is a generator of scale transformations [24], 
we take V ( t )  of the form 

V 2 ( t )  = e-”(‘)’> (2.27) 
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where A ( t )  is shortly to be determined and where the subscript 2 indicates that V 2 ( f )  
is generated by K 2 .  From the Baker-Hausdorff formula, we have [25] 

(2.28) 

C C Gerry and M F Plumb 

V2( t ) (  KO * K , )  V t (  t )  = e**(')( K O  i: K , ) .  

Thus with the choice A ( t )  = ln(M,/M( t ) ) ,  we have 

V*( t ) H (  t )  V t (  t )  = 2woK, (2.29) 

so that 

1 d M  
M ( t )  dt  

i 1 d M ( t )  
2 M ( t )  dt  

= 2 w o K o - p  - K2 

=2woKo+- - - ( K +  - K - )  

This is of the form of (2.18) with A = 2w, and 

i 1 d M ( t )  
f ( f )  =i M(t) 7. 

(2.30) 

(2.31) 

The time-dependent scale transformation we have performed here is equivalent to the 
canonical transformation carried out by Colegrave and Abdalla [ 1-41, 

We now consider the transformation of the variances of the field quadratures. Since 
it can be shown that 

~ ( t ) ( a * a + ) V + ( t )  =e*A""2(a*a+) (2.32) 

that the quadrature operators (2.8) transform to the new representation as 

1 
2 

1 
2i 

V (  t )X, V+(  t )  = Xl0 = - ( a  + a +) 

V (  t 1x2 V + (  t )  = x2, = - ( a  - a + ) .  

(2.33) 

Since we are dealing with superpositions of only even photon states, we shall always 
have (X,o)=O=(X20). Then from (2.14), the variances of Xl0 and X2,, are given as 
[12,131 

((AXiol2) = ( K O +  K , )  

((AX2Id2) = (KO - Kl). 

For an SU(1, l )  cs, (5, k),  these variances are given as [12,13] 

(2.34) 

(2.35) 

where, for the squeezed vacuum, k is set equal to $. For a discussion of the squeezing 
associated with an SU(1, l )  cs, see [12] and [13]. 
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As 
driven 
factor, 

a final remark in 
by R(t)  and one 
the cs driven by 

this section, we discuss the relation between a SU(1, l )  cs 
driven by H ( t ) .  Let 14, k )  be, up to a time-dependent phase 
R(t)  and It’, k )  be that driven by H ( t ) .  The two states are 

It’, k ) =  v;(t)m (2.36) 

where V:( t )  = eiA(’)K2 is a finite SU( 1, 1) group transformation. The group element in 
the 2 x 2 non-unitary representation is determined by realising K 2  as K 2  = - i cr , /2  where 
u1 is a Pauli matrix and K 2  is now non-Hermitian. The unitary infinite-dimensional 
representations are obtained from the 2 x 2 non-unitary representation by induction 
[26]. Thus we have, upon expanding the exponential, 

related (up to a factor) by 

coshfh(t)  sinhiA(t) 
sinh f h  ( t )  cosh ;A ( t )  

(2.37) 

Now for any SU( 1,  1 )  transformation T ( g ) ,  where g is the associated 2 x 2 group element 

(2.38) 

it can be shown that [27]1 

T ( g l ( 6 ,  k )  = e-%’, k )  

where 

a t +  b 
b”[+ a” 

6’ = @=2karg(u*+b*[) .  

(2.39) 

(2.40) 

Thus, from (2.36), (2.37) and (2.40), we have 

[( t )  cosh &A ( t )  + sinh :A ( t )  
(2.41) 

If 6 ( t )  is a solution of (2.19) for Hamiltonian R(t) ,  then [ ’ ( t )  is a solution for 
Hamiltonian H (  t ) .  

To calculate the average energy of the cavity E (  t )  we must use H( t )  of’ (2.4) and 
the state \t’( t ) ,  k )  such that 

E ( t )  = ( 6 ’ ( t ) ,  klH(t)lS’(f), k). (2.42) 

In what follows, we shall mainly work in the transformed picture and we will not 
consider the energy further. 

“ ( ‘ ) = ( ( t )  s i n h $ h ( t ) + c o s h ~ A ( t ) ’  

3. Applications 

We now turn to the applications for the various mass laws mentioned in the introduction. 

3.1. Exponentially decaying mass 

We assume that the mass varies with time according to 

~ ( t )  = M,, e-*”‘. (3 .1 )  

t One must replace 6 by -6 in [17] to agree with our convention. 
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This mass law describes the damping of the field as it leaks through the cavity wall 
if y = o o / 2 Q  where wo is the frequency of the decaying mode and Q is the quality 
factor of the cavity [l]. This form of the time-dependent mass gives rise to the 
phenomenological damping term w o g /  Q in the semiclassical equations for the field 
in the work of Jaynes and Cummings [28]. In this case the Hamiltonian H ( t )  becomes 

H(t)=2w,[Kocosh(2yt)-~sinh(2yt)(K++ K-)] (3.2) 

while H (  t )  becomes 
H = 2woKo + 2 yK2 

= 2woKo - iy( K ,  - K - )  (3.3) 
which is independent of time. Under certain conditions, namely when y < wo,  this can 
be simplified even further by performing a transformation to remove the non-compact 
generator K2 ,  This is accomplished by using a unitary transformation generated by K ,  , 

v 1 -  - e - i P K I  (3.4) 

(3.5) 

and defining 
fi = V,HV: = Ko[2wo cosh p -2y sinh p ]  + K2[2y cosh p -2w0 sinh p] 
where we have used the Baker-Hausdorff formulae 

e-'pKiKO eiPKl = KO cosh p - K ,  sinh p 
lK2 eiPKl = K2 cosh p -KO sinh p. (3.6) 

6 = 2wKo (3.7) 

e-ipK 

With the choice p = tanh-'( y / w o )  if y < w o ,  fi reduces to 

where w is the modified frequency w = ( w i -  Thus, as previously shown by 
Colegrave and Abdalla [l], the effect of the damping is to modify the frequency of 
the cavity, as long as the damping is weak ( wo > y ) .  The eigenstates of the Hamiltonian 
fi are just the SU(1 , l )  groups basis Im, k )  and the energy eigenvalues are E ,  = 
2 w ( m  + k). On the other hand, if y > w o ,  one must remove the KO generator and 
will have a continuous spectrum. We shall not pursue this case of overdamping. 

Now the equation of motion for the Hamiltonian H for an initial SU(1, l )  cs 1m, k j ,  
5 = -2iw5 (3.8) 

t( t )  = [(o) e-2iw' (3.9) 

whose solution is 

which is just a circle centred at the origin of the &plane. Now for the Hamiltonian 
fi, the motion easily obtained by the transformation 

(3.10) 
- 

I!$'(f), k) = W ( t ) ,  k) 
since, from the 2 x 2 realisation of the su( 1, 1) algebra, where K1 = ia2/2, 

(3.11) 

then using (2.39) and (2.40), we have 

cosh(P/2)5( t )  + i sinh(p/2) 
"(')= -i s inh(p/2)5( t )+cosh(p/2)  (3.12) 
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where p = tanh-’(y/wo). [ ’ ( t )  is the solution of (2.19) for the Hamiltonian ,g of (3.3). 
This also is a circle in the 5-plane but the centre is displaced from the origin. An 
example of such an orbit is seen in figure 1. This orbit is related in turn to the orbit 
from (2.19) for the Hamiltonian of (3.2) by the transformation of (2.36). Thus 

It”(t)Y k)= V;(~)l t ’ (~)¶ k) (3.13) 

yields 
[’( t )  cosh f A  ( t )  + sinh f A  ( t )  
t’( t )  sinh +A ( t )  + cosh f A  ( t )  

[’’( t )  = (3.14) 

where A ( t )  = ln(M,/M(t))  = 2yt and where [ ’ ( t )  is given by (3.12). This provides an 
analytic solution to (2.19) with A( t )  and f (  t )  given by (2.23) which, for the decaying 
mass are just 

A( t )  = 2w0 cosh(2yt) 
f ( t )  = - w o  sinh(2yt). (3.15) 

Typical orbits determined from the equation are shown in figure 2. We note that 
the orbits, regardless of the starting point, are attracted to the point 5 = (1,0), asymptoti- 
cally approaching the unit circle. This type of behaviour was previously discussed in 

It is also worthwhile to calculate the variances of the field quadratures for such 
[161. 

states. We use the physical variances in the form 

(3.16) 

where the expectation values are with respect to the SU(1, 1) cs with 5 determined 
from (2.19) with (3.15). For the decaying mass 

((AXl)2) = e-2y‘(Ko+ Kl)  
((AX,)’) = e2“(Ko- KJ. (3.17) 

1 

0.5 

0 
Y 

-0.5 

-1 
-1 -0.5 0 0.5 1 

X 
Figure 1. &plane motion for the Hamiltonian of (3.3) where y = 0.5 and  t ( 0 )  = 0.5 where 
5 = x + iy. 



4006 C C Gerry and M F Plumb 

0.5 

0 
Y 

-0.5 

-1 
-1 -0.5 0 0 . 5  1 

X 

Figure 2. Motion in the &plane for the Hamiltonian of (3.2) with y = 0.5 and [(O) = 0.5. 
Because of (3.14), this is not the same ((0) of figure 1. 

At first sight it would appear that the variance of XI should approach zero as t +. 00; 

however (KO+ K , )  approaches infinity as ,$+. ( 1 , O )  in this limit so the variances in fact 
remain finite as shown in figure 3. What we see in this picture is the combined effects 
of the motion seen in figure 2 where the orbit spirals to the unit circle on loops 
decreasing in size and the exponential factors in (3.17). This observation is in accordance 
with a conjecture made in the appendix of [ 161. This is in fact the same behaviour we 
obtain by using the Hamiltonian of (3.3) and the variance formulae of (2.34). We have 
checked that, in fact, the oscillation frequency w of these variances is reduced below 
wo in accordance with the relation w = ( U :  - y2) ’ ” .  Thus we agree with Colegrave and 
Abdalla [ l ]  that the only effect of the decaying mass is to alter the cavity frequency. 
The fact that the variances of XI and X 2  continuously oscillate at frequency w rather 
than approach some limit (such as those of the vacuum) physically seems to imply 
that the fluctuations of the field are independent of its decay. In fact, the expectation 
values of the fields gX(z, t )  and X,.(z, t )  are always zero anyway for the squeezed 

0 2 4 6 E 10 
Time 

Figure 3. Variances of X ,  and X ,  for the evolution described in figure 2. 



Evolution of SU(1, 1 )  coherent states 4007 

vacuum states owing to the fact that only the even photon number states compose the 
squeezed vacuum. 

3.2. Oscillating mass 

We now consider a mass law of the form 

t < O  
t 3 0 .  {: + a sin S t ,  la1 < 1 

M ( t ) = MO x (3.18) 

This mass dependence simulates the fluctuations of the field in a cavity in resonance 
with a reservoir of two-level atoms. The photon population in the cavity is modified 
by the Rabi oscillations of the atoms in a beam traversing the cavity, where S is then 
taken to be the Rabi frequency [ 2 ] .  The quantal harmonic oscillator with such a time 
dependent mass has also previously been studied by Remaud and Hernandez [ 291. 
They found a resonance for the case 6 = 2 0 0  where wo is the natural frequency of the 
oscillator. 

We shall work exclusively in the picture where the Hamiltonian is given by (2.30). 
For this case, for t 2 0 ,  we have 

H ( t )  = 2 w o K 0 + -  ( ‘Os “ ) ( K + - K - ) .  
2 l + a  sinat  

(3.19) 

In figure 4 we present typical orbits in the [-plane for various 6 with a =0.5. For 
6 << 2 w 0  (where wo = l ) ,  the orbits apparently are confined to regions where 151 < 1. On 
the other hand, as 6 is increased toward the resonance value, the orbits begin to slowly 
spiral out to the unit circle. The motion to the unit circle is more rapid at the resonance 
S = 2 w o .  As S increases beyond the resonance, the motion appears to take on some 
interesting behaviour but remains well within the unit circle. For very high 6(S - 20) 
the motion starts to resemble that obtained in another work [30] where the S U ( 1 , l )  
cs were subjected to quasiperiodic pulsing. The patterns we obtain here resemble the 
patterns of [29 ]  only for low pulsing strength. 

We also calculate the variances of Xl0 and X,, at the resonance condition. The 
results are displayed in figure 5 .  It is clear that as 16) + 1 a high degree of squeezing 
(i.e. enhanced squeezing) of the initial SU(1, 1 )  cs will occur. 

3.3. Damping with pulsation 

With 

M (  t )  = MO exp[2( yt + p sin v t ) ]  (3.20) 

we have 

1 fi( t )  = 2woKo +- ( 2 y  + pv cos v t ) (  K ,  - K - ) *  (3.21) 

The mass law above has also been shown to be relevant to the description of periodic 
fluctuations in a cavity in resonance with a reservoir of two-level atoms and .with cavity 
damping [31]. 

In figure 6 we display typical orbits in the &plane. For y = 1 ,  wo = 1, p = 1 and 
v = 0.5, the orbit starting at [(O) = 0.5 approaches the unit circle at 5 = (0, l),  decelerat- 
ing as it does so, coming to rest at (0, 1 )  (figure 6 ( a ) ) .  It is easy to show that for 

2 
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0.5 

0 -  
Y 

-0.5 

- 4  

(ai 

- 

- .... . 

-1 -0.5 0 0.5 1 
X 

0.5 

0 -  
Y 

-0.5 

-1 

1 

- 

\ -  E 

- 

0.5 

0 
Y 

-0.5 

-1  
-1 -0.5 0 0.5 1 

X 

0.5 - 

0 -  
Y 

- 0 . 5  - 

-1 
-1  -0.5 0 0.5 1 

X 

0.5 

0 
Y 

-0.5 

-1 
-1 -0.5 0 0.5 1 

X 

1 

(4 

-1 -0.5 0 0 . 5  1 
X 

Figure 4. Motion in the [-plane for the pulsing mass 
of (3 .18)  for a = 0.5, [ ( O )  = 0.5, wo = 1 and ( a )  S = 
0 . 5 w 0 ,  ( b )  6 = w o ,  ( c )  S = 2w0 (resonance), ( d )  6 = 
8 ~ 0 ,  ( e )  6 = 2 0 w o .  4000 points are plotted. 
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4 

0 
0 2 

T i m e  
4 

Figure 5. Variances of X , ,  and X, ,  at the resonance condition of figure 4(c). 
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Figure 6. Motion in the 6-plane for the damped, pulsing mass of (3.20). ( a )  y = 1, wg = 1, 
p = 1, [(O) = 0.5 and U = 0.5; ( b )  same as ( a )  but with y = 0.5, ( c )  y = 0.5 and U = 2 w 0 ,  
( d )  u = 4 w 0 .  
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A = constant andf(  t )  an imaginary function of time, the unit circle is a set of stationary 
points for the differential equation (2.19). On the other hand for y = 0.5 (all other 
parameters fixed) the motion is periodic in the .$plane well within the unit circle 
(figure 6 ( b ) ) .  With y = 0.5 and Y = 2w0 the motion rapidly spirals out to the unit circle 
(figure 6(c)). The condition Y = 2w0 is the resonance condition described by Abdalla 
and Ramjit [ 9 ] .  For Y = 4w0 the motion again tends to the unit circle but less rapidly. 
We do not display the associated variances since these may easily be inferred from 
the orbits in figure 6 and (2.35). 

5. Conclusions 

In this paper, we have described the evolution of SU(1, l )  cs in harmonic oscillators 
with time-dependent masses. The Hamiltonians driving the states are coherence preserv- 
ing so the dynamics is described by the ‘classical’ motion in the phase space in the 
form of the Lobachevsky plane where the motion is determined by an inhomogeneous 
nonlinear differential equation (Riccati equation). The variable mass harmonic oscil- 
lator may represent a quantised electromagnetic field in a cavity where the field varies 
with time under the action of some reservoir. We considered three different types of 
variable mass: decay masses, pulsing masses and masses damped with pulsation. For 
the first case, the major effect is to modify the frequency of the cavity, while for the 
latter two a high degree of enhanced squeezing is possible as the pulsing frequency 
approaches the resonance value of 2w,. 

Finally we point out that the approach to the time evolution we have taken here 
is not the only possible one. Another approach would be to use the Wei-Norman type 
procedures exploited by Dattoli et a1 [32] or by using a path integral approach [33] 
recently developed for coherence preserving Hamiltonians. The method we have used 
here we believe to be the most direct. 
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